„Habe nun ach! Philosophie, Juristerei und Medizin, und leider auch Theologie! durchaus studiert mit heißem Bemühn. Da steh ich nun, ich armer Tor! und bin so klug als wie zuvor; heiße Magister, heiße Doktor gar, und ziehe schon an die zehen Jahr herauf, herab und quer und krumm meine Schüler an der Nase herum – und sehe, dass wir nichts wissen können!

Das will mir schier das Herz verbrennen!“ 

- Faust I, S. 354–365

Falsifizierbarkeitsgrade

Für den Fall konkurrierender Theorien kann man nach Popper Falsifizierbarkeitsgrade ermitteln, um deren Qualität zu vergleichen. Dabei ist die Qualität einer Theorie umso höher, je höher ihr empirischer Gehalt ist. Popper entwickelt zwei Methoden, um einen Falsifizierbarkeitsvergleich für Theorien durchzuführen: Den Vergleich aufgrund eines Teilklassenverhältnisses und den Dimensionsvergleich. Beide Methoden ergänzen einander.

1. Teilklassenverhältnis

Ein Vergleich aufgrund des Teilklassenverhältnisses ist nur möglich, wenn die empirischen Gehalte von Theorien ineinander geschachtelt sind. Eine Theorie ist dann in höherem Grade falsifizierbar, wenn ihr empirischer Gehalt den empirischen Gehalt einer anderen Theorie als echte Teilklasse enthält. Popper untersucht hierzu das Verhältnis von empirischem und logischem Gehalt sowie von empirischem Gehalt und absoluter logischer Wahrscheinlichkeit von Theorien. Der logische Gehalt eines Satzes ist die Menge aller logischen Folgerungen dieses Satzes. Popper kommt zu dem Ergebnis, dass für empirische Sätze der empirische Gehalt mit dem logischen Gehalt steigt, so dass für sie der Falsifizierbarkeitsvergleich mit der Ableitbarkeitsrelation erfasst werden kann, und dass ein steigender empirischer Gehalt eine abnehmende absolute logische Wahrscheinlichkeit zur Folge hat. Der logisch allgemeinere empirische Satz hat also nach Popper den höheren Grad der Falsifizierbarkeit und ist logisch unwahrscheinlicher.

Popper erläutert diese Zusammenhänge anhand der folgenden vier Beispielsätze:

(p) Alle Weltkörperbahnen sind Kreise,

(q) Alle Planetenbahnen sind Kreise,

(r) Alle Weltkörperbahnen sind Ellipsen,

(s) Alle Planetenbahnen sind Ellipsen.

Da alle Planeten auch Weltkörper sind, folgt (q) aus (p) und (s) aus (r). Da alle Kreise auch Ellipsen sind, folgt (r) aus (p) und (s) aus (q). Von (p) zu (q) nimmt die Allgemeinheit ab; (p) ist somit leichter falsifizierbar und logisch unwahrscheinlicher als (q). Von (p) zu (r) nimmt die Bestimmtheit ab. Von (p) zu (s) sowohl Allgemeinheit als auch Bestimmtheit. Es gelten die entsprechenden Verhältnisse für Falsifizierbarkeitsgrad und absolute logische Wahrscheinlichkeit.

Popper betont, dass der Falsifizierbarkeitsvergleich mit Hilfe des Teilklassenverhältnisses empirischer Gehalte nicht in jedem Fall möglich ist. Deshalb stützt er den Falsifizierbarkeitsvergleich noch auf den Dimensionsbegriff.

2. Dimension

Unterschiedliche Theorien können laut Popper unterschiedlich komplexe Basissätze für eine Falsifikation erfordern. Diese Komplexität {\displaystyle n}n macht Popper an der Anzahl der Basissätze fest, die durch Konjunktion miteinander verbunden sind. Die Dimension {\displaystyle d}d einer Theorie nennt er die größte Zahl {\displaystyle n}n, für die die Theorie mit einem beliebigen Basissatz vereinbar ist. Hat eine Theorie die Dimension {\displaystyle d}n, kann sie erst durch eine Konjunktion aus mindestens {\displaystyle d+1}d+1 Basissätzen widerlegt werden. Popper hält es nicht für zweckmäßig, „Elementarsätze“ oder „Atomsätze“ auszuzeichnen, so dass Theorien Dimensionen absolut zugeordnet werden können. Er führt deshalb „relativ atomare“ Basissätze ein. Der Falsifizierbarkeitsgrad wird also auf den Kehrwert der Dimension gestützt, so dass eine höhere Dimension einen geringeren Grad an Falsifizierbarkeit bedeutet. Anschaulich ausgedrückt besagt dies: Je weniger Basissätze ausreichen, um eine Theorie zu widerlegen, desto leichter falsifizierbar ist sie. Ein Beispiel soll den Dimensionsvergleich verdeutlichen.

3. Beispiel

Angenommen, man ist am gesetzmäßigen Zusammenhang zweier physikalischer Größen interessiert. Man kann z. B. die Theorie aufstellen, dass ein linearer Zusammenhang besteht. Die relativ atomaren Basissätze haben dann die Form: Das Messgerät A an der Stelle k(a) zeigt … und das Messgerät B an der Stelle k(b) zeigt …. Die lineare Theorie ist mit jedem relativ atomaren Basissatz vereinbar. Sie ist auch mit jeder Konjunktion zweier relativ atomarer Basissätze vereinbar. Erst Konjunktionen mit mindestens drei relativ atomaren Basissätzen können mit der linearen Theorie in Widerspruch stehen. Die lineare Theorie hat die Dimension 2. Geometrisch ausgedrückt bedeutet dies, dass zwei Punkte eine Gerade bestimmen und dass für drei Punkte entschieden werden kann, ob sie auf einer Geraden liegen oder nicht. Wenn man den Anfangspunkt des Systems vorgibt, z. B. weil die Versuchsanordnung es verlangt, dann verändert sich die Dimension. Jede Vorgabe eines Punktes reduziert die Dimension um 1. Wenn zwei Punkte vorgegeben sind, kann schon ein relativ atomarer Satz die Theorie falsifizieren. Man kann eine lineare Theorie wie folgt als Funktion darstellen: f(x) = mx + n. Als alternative Theorie kann man eine Parabel annehmen: f(x) = ax² + bx + c. Wenn man den Punkt (0/0) vorgibt, schränkt man die Lage der grafischen Darstellung der Theorien ein: f(x) = mx und f(x) = ax² + bx. (Beide gehen durch den Nullpunkt des Koordinatensystems.) Die erste Theorie hat dann die Dimension 1 und die zweite die Dimension 2. Beide erfüllen die Bedingung f(0) = 0. Man kann einen weiteren Punkt (1,1) vorgeben. Für die linearen Theorie ergibt sich dann: f(x) = x; für die quadratische z. B. f(x) = x². Die Dimensionen haben sich um 1 reduziert. Ein weiterer Messpunkt (2,3) führt zur Falsifikation der linearen Theorie, denn für m = 1 lässt sich die Bedingung f(2) = 3 nicht erfüllen. Anders verhält es sich bei der quadratischen Theorie. Sie kann auf diese Bedingung eingestellt werden. Z. B. erfüllt f(x) = (1/2)*x² + (1/2)*x die Bedingung f(2) = 3. Die Vorgabe eines vierten Punktes würde auch bei der quadratischen Theorie eine Falsifikation möglich machen. Die Dimension einer Theorie kann noch auf eine andere Art in ihrer Dimension eingeschränkt werden als durch die Angabe eines Punktes. Für die lineare Theorie kann z. B. die Steigung m vorgegeben werden. Geometrisch ausgedrückt wird dadurch nicht die Lage der Geraden im Koordinatensystem festgelegt, sondern anschaulich ausgedrückt die Neigung zur x-Achse. (Popper nennt die Einschränkung der Dimension durch Vorgabe eines Punktes „material“, die durch Vorgabe z. B. der Steigung oder anderer Eigenschaften, die die Form der Kurve und nicht ihre Lage verändert, „formal“.) Die Vorgabe eines Punktes der grafischen Darstellung einer Theorie erhöht also den Falsifizierbarkeitsgrad dieser Theorie. Dasselbe gilt für eine formale Einschränkung durch Angabe der Steigung.

zum vorherigen Blogeintrag                                                                               zum nächsten Blogeintrag 

 

Liste aller Blogeinträge

Kommentare: 0

Impressum | Datenschutz | Sitemap
Diese Website darf gerne zitiert werden, für die Weiterverwendung ganzer Texte bitte ich jedoch um kurze Rücksprache.